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Figure 1: Given a line drawing image, our method first derives a tangent vector field from the input image and traces it to get an initial curve
network (a). It then performs a global optimization that fits the curve network to image centerlines by taking the gradient vector field as an
external force (b). Our method finally detects junction regions based on (b) and performs a local optimization in each junction region (c).
Our coarse-to-fine optimization framework is able to produce high-quality curves (as shown right) with low computational cost.

Abstract
Vectorizing line drawings is a fundamental component of the workflow in various applications such as graphic design and com-
puter animation. A practical vectorization tool is desired to produce high-quality curves that are faithful to the original inputs
and close to the connectivity of human drawings. The existing line vectorization approaches either suffer from low geometry
accuracy or incorrect connectivity for noisy inputs or detailed complex drawings. We propose a novel line drawing vectorization
framework based on coarse-to-fine curve network optimization. Our technique starts with an initial curve network generated
by an existing tracing method. It then performs a global optimization which fits the curve network to image centerlines. Fi-
nally, our method performs a finer optimization in local junction regions to achieve better connectivity and curve geometry
around junctions. We qualitatively and quantitatively evaluate our system on line drawings with varying image quality and
shape complexity, and show that our technique outperforms existing works in terms of curve quality and computational time.

CCS Concepts
• Computing methodologies → Image manipulation; Shape modeling;

1. Introduction

The vectorization of line drawings is an important component of
the workflow in graphic design and computer animation. It serves
as a preprocessing step for many applications such as animated con-
struction of line drawings [FZLM11] and creation of curve-based
vector graphics [OBW∗08, FSH11]. A practical vectorization tool

is desired to produce high-quality curves that are faithful to the in-
put line drawings and close to the connectivity of human drawings.
The quality of vectorization has a high impact on downstream ap-
plications.

Software tools for vectorization of line art include Adobe
Live Trace, Inkscape Potrace [Sel03], VectorMagic, and WinTopo
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[ZS84], etc. The existing tools are efficient but often fail to deal
with detailed complex drawings. The traditional methods based on
tracing [BF12] or skeletonization [NHS∗13] are not robust to noisy
inputs or complex junctions. The modern techniques rely on deep
learning or frame fields [BS19]. However, the deep learning ap-
proaches [GZH∗19, MSSG∗21] are not good at geometry model-
ing, even in areas without ambiguity. Frame fields robustly dis-
tinguish directions around junctions. However, extracting curves
from a frame field often produces artifacts. The approach of [BS19]
traced along the frame field and thus only distinguishes X- and
T-junctions. Puhachov et al. [PNCB21] improved curve extraction
based on image junction detection, which, however, leads to incor-
rect connectivity due to lack of detection of Y-junctions. A quick
comparison to existing methods is demonstrated in Figure 2.

To effectively and efficiently produce high-quality curves, we
propose a novel coarse-to-fine optimization framework. We ob-
serve that compared with ambiguous directions in noisy and junc-
tion areas, image gradients containing magnitudes are more reli-
able (see a comparison in Figure 1 (a) and (b)). Thus by taking im-
age gradients as external forces, our optimization algorithm always
keeps curves located at image centerlines. Our method starts with
a curve network initialized by an existing tracing method [BF12]
(Figure 1 (a)). It then performs a global optimization, leading to
accurate curve geometry in non-junction regions and coarse refine-
ment of junction positions (Figure 1 (b)). Our method finally de-
tects junction regions based on the coarse solution and perform a
local optimization in each junction region, aiming to achieve more
continuous connectivity and better curve geometry around junc-
tions (Figure 1 (c)).

Our system is efficient since our optimization solvers perform
on sparse curve points rather than dense pixels. In contrast, the
frame field-based methods [BS19, PNCB21] computed the frame
field by a global optimization on a pixel grid, and deep learning-
based methods [GZH∗19, MSSG∗21] also make computations on
image pixels.

To demonstrate the effectiveness of our proposed method, we
qualitatively and quantitatively evaluate our system on line draw-
ings with varying image quality and shape complexity. We show
that our technique outperforms existing works in terms of curve
quality and computational speed. The main contributions of our
work are as follows:

• A novel gradient-driven curve network optimization algorithm
for line vectorization, which robustly forces a given curve net-
work to fit the centerlines of an input line drawing image.
• A novel line drawing vectorization framework based on coarse-

to-fine curve network optimization, which is able to produce
high-quality curves with low computational cost.

2. Related Work

Vectorization of Line Drawings. The early studies on line vec-
torization often suffer from serious artifacts on line art with com-
plex shapes, including the tracing methods [SSC∗00, SSTC02] and
the skeletonization methods [ZS84, ZY01]. Improved tracing ap-
proaches [BF12, CLMP15, NS19] can produce more promising
tracing results. However, they still fail on ambiguous junctions

Bessmeltsev and Solomon 2019Input Puhachov et al. 2021  Ours

Topology of Puhachov et al. 2021  Topology of OursMo et al. 2021Noris et al. 2013

Figure 2: The traditional method [Noris et al. 2013] is sensitive to
noisy inputs. The deep learning approach [Mo et al. 2021] suffers
from geometrical artifacts. Frame field-based approaches [Bess-
meltsev and Solomon 2019; Puhachov et al. 2021] are more pre-
cise but suffer from incorrect connectivity at complex junctions. The
topology comparison shows that Puhachov et al.’s results contain
long redundant curves (for clarity we draw them with small off-
sets), though the connectivity of these curves is visually correct.
Our method produces higher quality curves in terms of geometry
and topology.

due to unreliable tracing guides. Recently, Mo et al. [MSSG∗21]
proposed a learning-based tracing approach. Their deep learning
framework focuses on image coverage and thus has few advantages
in capturing geometry and topology. In contrast, our method takes
the tracing process as an initial step, and then corrects the geometry
and topology by our coarse-to-fine optimization algorithm.

Recently, many learning-based methods have been proposed
for this task. However, these works are either not suitable for
noisy inputs (e.g., noisy scanned pencil drawings in Figure 10)
[KWÖG18, GZH∗19, BCY∗21, DYH∗21], or not good at geome-
try modeling on detailed complex drawings [EVA∗20, MSSG∗21].

The recent frame field-based methods target noisy scanned in-
puts and detailed complex drawings. For example, Bessmeltsev and
Solomon [BS19] proposed the frame field to disambiguate direc-
tions. However, tracing along the frame field only distinguishes X-
and T-junctions. Stanko et al. [SBBB20] explored a parameteriza-
tion approach, but it tends to over-simplify the shapes. Puhachov et
al. [PNCB21] improved curve extraction by detecting junctions, but
introduced extra connectivity artifacts due to lack of Y-junction de-
tection. Besides, frame field-based methods are high computational
complexity, thus greatly limiting their practical usage. In contrast,
our method is more efficient and produces results with better con-
nectivity (see comparisons in Figure 2 and Section 5).

There exist several techniques focusing on topology reconstruc-
tion [NHS∗13, GZH∗19]. We are inspired by these approaches
that first built base centerlines and then reconstructed the topol-
ogy at junctions. Noris et al. [NHS∗13] removed the centerlines
inside the junction regions and reconnected those outside. Their
approach might make the reconstructed curves deviate from the
original image lines. Our optimization method avoids such prob-
lems by always keeping curves located at image centerlines. Guo
et al. [GZH∗19] proposed a learning-based method. However, their
model is not suitable for noisy inputs as shown in their article. In
contrast, our system works well on both clean and noisy drawings.
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Iterations of Global Curve Network Optimization  Iterations of Local Optimization at Junctions Initialization by Tracing
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Figure 3: Workflow of our proposed technique. (a) shows a part of an input line drawing. (b) is the initial curve network generated by an
existing tracing approach. We optimize (b) in two steps: (c)-(d) globally optimize the overall geometry and junction positions of the curve
network; and (e)-(f) locally optimize the junction positions and curve pieces in junction regions, leading to the final result (g). (h) and (i)
serve as the external forces. (h) is the image gradients, and (i) is the connectivity inferred from (d): a curve piece is either continuously
connected with another or not (marked in red or blue).

Sketchy Drawings Vectorization. Vectorization methods for
sketchy line drawings [FLB16, PPM18] adopted a region-based
manner, and were not suitable for line drawings with many open
curves. Besides, these approaches designed for sketchy drawings
focus on simplifying sketches and thus often fail to deal with com-
plex shapes, even on clean line drawings.

Sketchy Simplification. Sketchy image simplification aims
to transfer sketchy line drawings to clean drawings. The ex-
isting solutions for this task include local filter-based meth-
ods [BCF∗07, DCP17], and deep learning-based approaches
[SSISI16, SSII18, XXM∗21, MKDM22]. The difference between
these methods and ours is that they generate bitmap images while
our work produces vector curves. The sketchy image simplification
tools can work as a pre-processing step for vectorizing line draw-
ings.

Another related problem is sketchy vector curve simplifica-
tion, including the clustering methods [BTS05, LRS18], the region-
based approach [LWH15] and the global optimization approach
[PvMLV∗21]. The difference is that these works take vectors as in-
puts and aim to generate clean curves, while our method produces
vectors from the input rasterized bitmap images.

3. Overview

The workflow of our approach is shown in Figure 3. We first adopt
a tracing approach to generate an initial curve network, which cap-
tures the raw geometry and connectivity (Figure 3 (b) and Section
4.1). We then refine the initial curve network in two optimization
steps: (1) globally optimize the overall geometry and junction po-
sitions by taking the image gradients to force the curve network to
image centerlines (Figure 3 (c)-(d) and Section 4.2); and (2) locally
optimize the junction position and curve pieces in each junction re-
gion (Figure 3 (e)-(f) and Section 4.3) by taking the connectivity

inferred from the result of the global optimization step as soft con-
straints (Figure 3 (i)). At each step, we formulate an energy mini-
mization problem and employ an iterative solver. Our optimization
solvers can converge in several iterations.

4. Methodology

4.1. Initialization by Tracing

To produce an initial curve network, we use a tracing method based
on [BF12]. The method of [BF12] distinguishes local ambiguities
due to: (1) tracing directions determined by an orientation field and
the front-end direction of tracing lines; and (2) cross sections used
to distinguish multiple underlying lines which meet at the pixel
level due to anti-aliasing. Our method differs from [BF12] by mak-
ing the following modifications: (1) we compute the orientation
field more efficiently by simply adopting a vector field perpendic-
ular to the image gradient; and (2) our tracing algorithm does not
deal with connection cases and geometry appearance, since they
will be addressed in the subsequent optimization steps. Thus, our
tracing process is much faster than [BF12].

4.2. Global Curve Network Optimization

Problem Formulation. We present the initial tracing curve net-
work as a graph G = 〈V,E〉, where V corresponds to the junc-
tion points and endpoints, and E corresponds to the curves.
Each edge e ∈ E is associated with a curve, denoted as ce =
{pe,1, pe,2, . . . , pe,n}, where pe,i is the i th curve point coordinate.
Our goal is to optimize the curve network to satisfy the following
constraints: (1) each ce is a smooth curve; (2) each ce locates at
image centerlines; and (3) the connections defined by the graph G
keep invariant. We thus define the energy minimization problem as
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(c) Optimization Result 

     without Image Term

(b) Optimization Result

     with Image Term
(a) Initial Curve Network

Figure 4: Comparison of with and without the image term Eimage.
(a) is an initial curve network. (b) is the result with Eimage, which
forces the curve network to the centerlines of input line drawings.
(c) shows the result without Eimage. The comparison shows that
Eimage plays an important role in correcting both curve geometry
and junction positions.

follows:{
min
{ce}

∑
e∈E

(Esmooth(ce)+wdEimage(ce)),

s.t.∀ce ∈Ne(v) end points are equal,∀v ∈ V
, (1)

where wd is the balance weight (empirically wd = 0.2),Ne(v) is the
neighboring edges of v, Esmooth and Eimage are defined to satisfy the
first and second constraints, respectively, and the equality equations
correspond to the third constraint.

The smooth term Esmooth encourages the curve to be more con-
tinuous while keeping the sections of high curvature by measur-
ing the sum of first- and second-order derivatives over the curve.
Specifically, we define Esmooth as:

Esmooth(ce) = w1
|ce|−1

∑
i=1
‖pe,i+1− pe,i‖2

+ w2
|ce|−1

∑
i=2
‖pe,i+1 + pe,i−1−2pe,i‖2,

(2)

where w1 and w2 are two balancing weights (empirically w1 =
0.8,w2 = 0.5).

We introduce the image term Eimage by observing that image
centerlines locate at the minima of image intensity. We thus define
the image term as the sum of image intensity at all curve positions:

Eimage(ce) =
|ce|

∑
i=1

I(pe,i), (3)

where I denotes the input image. Note that Eimage is the key to cor-
recting curve geometry and junction positions. Figure 4 illustrates
the effects by comparing the optimization results with and without
the image term (Figure 4 (b) and (c)).

Problem Solver. Computing all points of the curve network at
once in Equation 1 is computationally expensive. Independently
solving each curve is faster but would make the constraints of Equa-
tion 1 unsatisfied. To address this issue, we adopt an iterative ap-
proach which alternately updates the coordinates of curves and the
junction points. At each iteration, we update each curve by adopt-
ing a gradient descent approach and update the junctions as the
average of the endpoints of adjacent curves. According to implicit
Euler, we define the formula for updating the points of curve ce as

(c) (d)

(f)(e)

Iteration 1 Iteration 3

(a)

(b)

Initial

Figure 5: Results of global curve network optimization for 1 and 3
iterations. (a) visualizes the gradients of the input image and (b) is
the initial curve network. (e)-(f) shows the iterations that take the
image gradients as external forces, and (c)-(d) shows the iterations
without the gradient forces. In comparison, (e)-(f) converges much
faster than (c)-(d).

follows:

Pt+1
e = (λ(w1L1 +w2L2)+ I)−1(Pt

e−λwd∇I~n(P
t
e)), (4)

with

L1 =


0 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 0

 ,L2 =


0 0 0
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
1 −4 6 −4 1
−1 −4 5 −2

0 0 0

 ,

where Pt
e = [pt

e,1, pt
e,2, . . . , pt

e,n]
T are the curve points at the t-th it-

eration, λ is a fixed step size (empirically set to 2 by default), I is
the identity matrix, ∇I = [ ∂I

∂x ,
∂I
∂y ]

T represents the gradients of the
input image I, and ∇I~n = 〈∇I,~n〉~n is the projection of ∇I to the
curve’s normal vectors.

Figure 5 shows the results by Equation 4 for 1 and 3 iterations.
The external force∇I~n makes the iterations converge fast (typically
3 iterations by default).

4.3. Local Optimization at Junctions

Based on the optimized curve network generated by Section 4.2, we
first detect junction regions and then optimize the junction position
and curve pieces inside each junction region. An overview of our
algorithm is illustrated in Figure 6.

Junction Region Detection. The junctions of an initial curve
network by tracing might deviate from the ground truth, especially
in ambiguous areas where many lines meet. We detect the ambigu-
ous regions by clustering junctions of the graph G = 〈V,E〉 defined
in Section 4.2, and each cluster defines a new junction region (Fig-
ure 6 (h)). Specifically, we perform a typical clustering algorithm
[JK05], by taking the distance function defined as:

d(v,u) =

{
1 R(v)∩R(u)

max(R(v),R(u)) > 0.3
0 otherwise

, (5)

where R(v) is the polygon region at junction v∈V within a distance
r (empirically r ∈ [2, 5]), as shown in Figure 6 (g).

Optimization in Junction Regions. Given a junction region,
we divide the curves that meet in the area into two sets of curve
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(a)

 Junction Clustering and Junction Region Detection  Results of Local Optimization at a Junction for 1，2，3 Iterations 

(c) (d)(b

Reconnect

Figure 6: The workflow of local optimization around junctions. (a) shows the curve network produced by global curve network optimization.
We first detect the junction regions (f)-(h) and then estimate the connectivity at junctions (b): a curve piece is either continuously connected
with another or not (marked in red or blue). To avoid reconnection artifacts (c), we optimize the curve pieces by taking the connectivity as
soft constraints (j)-(l), leading to a correct reconstruction result (d).

(a) Input image and

Initial tracing curves

(b) Result of 

global optimization

(c) Initial     and

of local optimization

(d) Result of

local optimization

Figure 7: Illustration of the initial p0 and si, in the case of clus-
tering multiple initial junctions (b) into one junction region (c). (a)
shows the input image and initial curves. (d) is the final result.

Figure 8: Top to Bottom: Minimizing Equation 8 with µi > µ j
makes p0 move towards si, causing α to increase. This changes
the shape of sk in two cases: (a) making sk smoothly merge to si for
(sk,si) ∈ T ; and (b)-(c) forcing the other sk to be nearly straight
(suppose si is the one that satisfies α < β).

pieces. We denote the curve pieces inside and outside the junc-
tion region as S = {si} and B = {bi}, respectively, where si =
{pi,1, pi,2, . . . , pi,n} and bi = {qi,1,qi,2, . . . ,qi,m} (see an example
in Figure 6 (i)). We estimate the connectivity among S as connec-

tion pairs, denoted as T = {(si,s j)}. (si,s j) ∈ T if the maxima
curvature of the Hermit spline of bi and b j is less than a thresh-
old. A curve piece si is either included in T or not (marked as
red or blue in Figure 6 (b) and (i)). Our goal is to reconstruct the
curve pieces inside the junction region (S) according to the esti-
mated connectivity. Directly reconnecting the curve pieces outside
(B) might produce curves that deviate from the input image (Fig-
ure 6 (c)). To avoid such artifacts, we optimize the junction position
and curve pieces by taking the connectivity as a soft constraint and
the image term (see Equation 3 in Section 4.2) as another constraint
that penalizes deviation (Figure 6 (j)-(l) and (d)).

The goal of the local optimization in a junction region is to opti-
mize the curve pieces S = {si} and the junction point p0 where they
meet, by enforcing the following constraints: (1) each si locates at
image centerlines; (2) each pair (si,bi) is continuously connected;
and (3) each pair (si,s j) ∈ T is continuously connected, and for
the other curve pieces not included T ((so,sl) /∈ T ∀sl), so is the
linear extension of bo. Mathematically, we thus define the energy
minimization problem as follows:{

min
S

Econtinue +wtEconnect +wdEimage

s.t. pi,0 = p0 ∀si ∈ S
, (6)

where wt and wd are balancing weights (empirically wt = 0.8,wd =
0.2), Eimage is defined in Equation 3 to satisfy the first constraint,
Econtinue and Econnect are defined to satisfy the second and third
constraints, respectively. Initially, we set p0 as the one closest to
the center of the clustered junction region and remove the curve
pieces fully inside the region (Figure 7 (b) (c)). As Figure 7 shows,
it might lead to topology simplification (see more results in Figure
12 (c) (d) and Figure 14).

To encourage each si to be continuous and keep si and bi to be
G1 continuous, we define Econtinue as:

Econtinue =
|S|
∑

i=1

|si|−1
∑

j=1
‖pi, j+1− pi, j‖2

+
|S|
∑

i=1
‖(pi,n− pi,n−1)− (qi,1− pi,n)‖2.

(7)
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Figure 9: Comparisons on clean digital inputs. Note that the topology of Puhachov et al.’s results might be incorrect though they look visually
correct (as shown in the small circles; for clarity we draw them with small offsets).

To satisfy the third constraint, each pair (si,s j) ∈ T should have
the same tangent directions at the connecting point p0. Thus we
formulate the third constraint as µi(p0− pi,1) = µ j(p j,1− p0) for
each (si,s j) ∈ T . We set µi 6= µ j to control the shape of the other
curve pieces sk ∈ S\{si,s j}. As Figure 8 shows, µi > µ j would in-
crease the angle between sk and si, thus either making sk smoothly
merge to si (Figure 8 (a)) or forcing sk to be nearly straight (Figure
8 (b) and (c)). The larger difference between µi and µ j, the more
curve shapes would change. We thus define Econnect as:

Econnect = ∑
(si,s j)∈T

‖µi(p0− pi,1)−µ j(p j,1− p0)‖2, (8)

where µi and µ j are initialized as 1 for each pair (si,s j) ∈ T , and µi

is increased for each curve piece sk ∈ S\{si,s j}:

µi =


µi +C(1− e−

π−θ(sk ,si)
π ) (sk,si) ∈ T

µi +C(1− e−κ(sk)) (sk,si) /∈ T ,(sk,s j) /∈ T ,
θ(sk,si)< θ(bk,bi)

,

(9)
where θ(sk,si) is the angle between sk and si, θ(bk,bi) is the angle
between bk and bi, κ(sk) is the maxima curvature over the curve
piece sk, and C is a constant (set to 10 by default).

Like Equation 1 in Section 4.2, Equation 6 is also solved by an
iterative gradient descent approach as illustrated in Figure 6 (j)-(l).
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Figure 10: Comparisons on noisy scanned inputs. Note that the topology of Puhachov et al.’s results might be incorrect though they look
visually correct (as shown in the small circles; for clarity we draw them with small offsets).

5. Results and Discussion

To demonstrate the effectiveness of our proposed method, we qual-
itatively and quantitatively evaluate our results (Sections 5.1 and
5.2). We show the efficiency of our method in Section 5.3 and show
our method as a post-processing step in Section 5.4. We discuss the
robustness in Section 5.5 and the limitations in Section 5.6.

5.1. Results and Comparison

We have tested our methods on a variety of line drawings with vary-
ing image quality and shape complexity, as shown in Figures 9, 10,
11, and 16.

Comparisons. We compare our method with the recent
morden algorithms, including three frame field-based meth-
ods [BS19, SBBB20, PNCB21], and one deep learning method
[MSSG∗21]. We take the results presented in the compared pa-
pers if any. Otherwise, we produce the results by the authors’ code
of the corresponding papers. We ran the code of [SBBB20] with
optimized parameters, and for [MSSG∗21], we ran their code for
several trials and selected visually the best ones. To show the com-
parison in term of topology, we recolored all the results in the same
color palette.

Figures 9 and 10 show that our method produces more con-
tinuous curves close to human drawings and is more robust on
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(a) Inputs (b) Bessmeltsev and Solomon 2019 (d) Ground Truth(c) Ours
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Figure 11: Comparisons to the ground truth. The inputs (a) are created from the ground truth vector drawings (d). The comparison shows
that our results are much closer to the ground truth.

Examples Mo et al. Bessmeltsev and Solomon Ours
Ground
Truth

Chamfer F-socre L Chamfer F-socre L Chamfer F-socre L L
Car 0.00046 0.740 0.049 0.00038 0.794 0.296 0.00026 0.869 0.717 0.597
Glasses 0.00025 0.861 0.047 0.00020 0.898 0.321 0.00020 0.899 0.834 0.667
Duck 0.00036 0.811 0.053 0.00032 0.808 0.165 0.00032 0.819 0.329 0.327
Face 0.00036 0.842 0.052 0.00026 0.869 0.178 0.00019 0.904 0.450 0.360
Cat 0.00034 0.789 0.051 0.00032 0.805 0.163 0.00031 0.804 0.386 0.326
Bag 0.00040 0.792 0.072 0.00026 0.833 0.413 0.00024 0.858 0.921 0.802
Product 0.00045 0.746 0.066 0.00032 0.808 0.280 0.00023 0.853 0.588 0.521

Table 1: Following [YVG20], we evaluate the sketch-to-sketch similarity (compared to ground truth) by computing the Chamfer distance
(lower is better) and F-score with distance 0 (higher is better). We measure the quality of vector graphics representation by the average
length of vector strokes (see the ‘L’ columns; closer to the ground truth is better, and longer is preferred with the same similarity).

fine details and complex junctions where many lines meet. The
method of [SBBB20] produces oversimplified curve geometry and
misses fine details. The deep learning-based approach [MSSG∗21]
suffers from small redundant curve segments since it focuses on
image coverage rather than geometry modeling. Bessmeltsev and
Solomon’s method [BS19] produces curves more accurately but
often fails at complex junctions (e.g., Sheriff’s left hand in Fig-
ure 9, Puppy’s eyes and Hippo’s claws in Figure 10). Puhachov et
al.’s results [PNCB21] achieve visually pleasing effects. However,
the lack of detection of Y-junctions leads to incorrect connectivity,
such as long redundant curves (e.g., marked regions shown in small

circles in Figures 9 and 10) and lack of some connections (e.g., the
Hippo’s crawl in Figure 10).

5.2. Quantitative Evaluation

To quantitatively evaluate our method, we adopt metrics from a
recent benchmark [YVG20]. We compute the metrics between the
algorithm’s vector output and ground truth vector drawings. Note
that the dataset of [YVG20] designed for sketchy inputs is not in
our scope, and the tested images frequently used in previous works
(e.g., inputs in Figures 9 and 10) have no corresponding ground
truth. Therefore we generate several image inputs (e.g., examples
shown in Figure 11) from vector drawings with various shapes and
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Examples Input Res.
Bessmeltsev and Solomon 2019

time
Stanko et al. 2020

time
Mo et al. 2021

time
Our
time

Elephant 500x753 1670s 1061s 18s 3.1s
Puppy 660x624 1180s 2031s 17s 2.4s
Hippo 700x535 1396s 463s 14s 1.8s
Penguin 500x714 1133s 354s 9s 1.6s
Kitten 500x714 2034s 462s 13s 1.9s
Banana Tree 500x714 606s 1079s 21s 2.3s
Muten 10242 2172s 2130s 29s 3.7s
Mouse 10242 >40min 1531s 31s 3.9s
Dracolion 10242 >40min >40min 38s 5.1s

Table 2: Our method is computationally more efficient than the frame field-based approaches [BS19, SBBB20] and the deep learning ap-
proach [MSSG∗21].

(a) Stanko et al. 2020 (b) Post-processing results by our method

(c) Mo et al. 2021 (d) Post-processing results by our method

Figure 12: Using our curve network optimization to post-process
the results by Stanko et al. 2020 and Mo et al. 2021, respectively.
The top row shows that our algorithm can correct the oversimpli-
fied curve geometry of Stanko et al. The bottom row shows that our
method can fix the issues of redundant curve segments and unde-
sired line breaks of Mo et al.’s vector output.

topology connections. To mimic the noisy scanned input images,
we render each stroke with varying line width and gray density.

Following [YVG20], we evaluate the sketch-to-sketch similarity
between our results and the ground truth by computing Chamfer
distance and F-score with distance 0. We also measure the quality
of vector graphics representation by the average length of the re-
sulting vector strokes. For comparison, we compute the same met-
rics on the frame field-based method [BS19] and the deep learning-
based method [MSSG∗21]. The quantitative evaluation results are
shown in Table 1.

The similarity evaluation in Table 1 shows that our results are
more precise, since our optimization algorithm always keep the
curves to fit the image centerlines. For the vector quality evalua-
tion, our results are much closer to the ground truth and have longer
continuous curves (see the visual effects in Figure 11). Our results

(a) Bessmeltsev and Solomon 2019 (b) Post-processing results by our method

Figure 13: Using our curve network optimization to post-process
the results by Bessmeltseve and Solomon 2019. (a) is their result
generated with default parameters. (b) is the result of applying our
method to correct the topology artifacts.

have a longer curve length than the ground truth because we make
connections in all the non-junction areas, while human drawings
might make breaks on sharp corners.

5.3. Running Time

We implemented our method in Python. A notebook with Intel(R)
Core(TM) i7 2.80GHz and 16GB RAM was used as the testing de-
vice. Table 2 presents the running time statistics of our algorithm
compared to other approaches. We ran the authors’ code of the
compared methods [BS19, SBBB20, MSSG∗21] on the same test-
ing device. As the table shows, our method is more efficient than the
frame field-based methods and the deep learning approach, thanks
to the efficient tracing initialization and the fast converged solver
for optimization. Note that the deep learning method of Mo et al.
[MSSG∗21] could be faster on GPUs. It is about half of the running
time on CPU in their article, yet slower than ours.

5.4. As Post-processing Step

Our curve network optimization algorithm (Sections 4.2 and 4.3)
can also work as a post-processing step for other line drawing vec-

submitted to COMPUTER GRAPHICS Forum (2/2023).



10 B. Bao & H. Fu / Line Drawing Vectorization via Coarse-to-Fine Curve Network Optimization

(a) Input sketchy image (b) Initial tracing curves (c) Our optimization result (d) Bessmeltsev and Solomon 2019  (e) Post-processing by 

our optimization method

Figure 14: Results on a sketchy image. (b) and (c) show the results of our initial tracing process and the following optimization algorithm,
respectively. In comparison, (d) shows Bessmeltseve and Solomon 2019’s result and (e) shows the result of applying our optimization method
to (d).

(a) r=1 (b) r=3 (c) r=7

Figure 15: Effect of changing the parameter r. Increasing r leads
to more continuous connectivity, and decreasing r allows capturing
more details.

torization methods. The top row of Figure 12 shows that our tech-
nique is able to correct the curve geometry of [SBBB20]. The bot-
tom row shows that our method can fix the issues of redundant
curve segments and break lines of [MSSG∗21]. Figure 13 shows
that our algorithm can correct the topology artifacts of [BS19] at
complex junctions.

5.5. Robustness and Paramter Settings

Our method depends on a few key parameters. In our experiments,
we use fixed parameter values for the energy weights w1,w2 in
Equation 2, wd in Equations 1 and 6, wt in Equation 6, and the gra-
dient descent step λ in Equation 4. We set one tunable parameter
r used for junction clustering in Section 4.3. We selected r within
the range r ∈ [2,5] (r = 3 by default). The effect of changing the
parameter r is demonstrated in Figure 15.

Figures 12 and 14 show how our optimization framework de-
pends on the intial curve network. Given the initial curves gener-
ated by different methods (Figures 12 (a) and (c), Figure 14 (b) and
(d)), our optimization method produces similar results (Figures 12
(b) and (d), Figure 14 (c) and (e)). The geometry of our results is
not sensitive to the initial curves, while the topology might depend
on the initial curve network in some cases such as missing parts.

5.6. Limitations and Future Work

Figure 14 shows our results on rough drawings that contain thick
overskeched lines. Our method dose not address the problem of
sketchy simplification. However, our optimization algorithm can
still improve the initial tracing curves (Figure 14 (b) (c)) and benefit
the other vectorization method [BS19] as a post-processing step
(Figure 14 (d) (e)).

Although our solution is able to extract correct topology in most
cases, our algorithm still fails in some areas. Our method might pro-
duce topology that differs from human perception (e.g., Elephant’s
left front feet in Figure 10). It is mainly because the connectivity
is not guaranteed to be correctly estimated (Section 4.3). In future
work, an improved connectivity estimation algorithm might be ex-
plored to address this issue. As shown in Figure 15, our connectiv-
ity estimation depends on a parameter r. A possible future direction
is to compute the value of r adaptively rather than select a fixed
value for a particular input.

6. Conclusion

We have presented a novel line drawing vectorization framework
based on coarse-to-fine curve network optimization. Our optimiza-
tion algorithm achieves geometry accuracy by keeping curves lo-
cated at image centerlines. To achieve more continuous connectiv-
ity, we perform a global optimization followed by a finer optimiza-
tion at local junction regions. Since our computation performs on
curve points rather than image pixels, our algorithm is efficient.
Our system can be immediately useful for downstream applica-
tions, such as line art animation and curve-based vector graphics.
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